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Abstract 

Rock paintings undergo physical, chemical, biological and/or anthropic alterations that alter their visibility. Cameras 
and image enhancement tools (DStretch® plug-in, for example) are commonly used to help identify and record 
images that have become invisible to the naked eye. HyperSpectral Imaging (HSI) which is strongly developing in 
many research and application fields, is tested in this study to analyze Neolithic rock paintings. We particularly address 
the question of what kind of additional information can Visible Near InfraRed HSI instruments, coupled to mathemati‑
cal transformations to reduce the dimensionality of the data, bring for rock paintings, compared to standard RGB 
cameras. From the analysis of a selection of panels painted on yellow-reddish altered sandstone walls and measured 
in Saharan shaded shelters, we show that HSI can reveal new figures by capitalizing both on its ability to extract the 
different pigment types with a greater contrast, and on the new discriminating information contained in the very 
near infrared part of the spectrum. Despite their much smaller image format, HSI can provide up to 5–7 contrasted 
images of the spatial distribution of the different types of pigments in the figures. It thus appears to be a promising 
non-invasive and efficient methodology to both reveal disappeared paintings and to study image juxtapositions and 
painted layer superimpositions.
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Introduction
Compared to techniques like freehand drawing, direct 
tracing or silver photography, digital photography 
and image enhancement software have dramatically 
improved the processes of documenting and studying 
rock art paintings [1–5]. Bringing more accurate and 
objective surveys [6, 7], these techniques not only facili-
tate the study of visible paintings [8–10], but also make it 

possible to discover new ones, either previous paintings, 
underdrawings or pentimenti, that we did not even know 
existed [11].

Digital photography has also proven particularly suit-
able for remote fieldwork due to its ease of use. Yet, to 
document rock images, it requires a camera with a suf-
ficient resolution, a skilled operator to control the vari-
ous parameters during the shooting, as well as advanced 
post-processing of the shots. Nevertheless, it is possible 
to make usable pictures without being an expert, as long 
as the shooting conditions are not extreme. The contri-
bution of image processing software to the study of rock 
art images has mainly concerned the enhancement of 
pictures, in order to reveal what the human eye could 
perceive with difficulty on site. These post-processing 
stages were developed in the beginning of the 1980s, 
when an image was scanned before being processed on a 
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computer. Mickael R. Rip [12, 13] was one of the first to 
assess this methodology on a rock-painting picture.

From then on, image enhancement software diversified 
as their performance increased, together with the arrival 
of digital cameras [14–17]. In addition, image enhance-
ment has also proven to be effective in monitoring the 
evolution in terms of degradation of the paintings as well 
as localized areas of the supports. This use for conserva-
tion purposes is currently an application under develop-
ment [10, 18, 19].

Among the software currently used for rock arts, the 
“standard” is Photoshop©, produced by the company 
Adobe© [2, 3, 20–22]. Another software appears to be 
particularly well adapted to the study of rock paint-
ings, because of its processing speed, very low cost and 
ease to use: DStretch®, a free plugin for ImageJ©, spe-
cifically designed in 2005 by Jon Harman [21, 23]. Ever 
since it became available [3], DStretch® has been widely 
used over the last 15 years by many rock art archaeolo-
gists [5, 24–27] as well as by Learned Societies like the 
AARS (Association of the Friends of Saharan Rock Art) 
[28]. To enhance digital photographs of cave paintings, 
DStretch® uses a decorrelation algorithm originally 
developed in 1978 at the Jet Propulsion Laboratory in 
Pasadena, California, where it was used to improve the 
contrast of Landsat multispectral images [29]. It was 
then used with the ASTER (Advanced Spaceborne Ther-
mal Emission and Reflectance Radiometer [30]). In 2004, 

NASA released images from the Rover mission to Mars, 
which had been enhanced with this technique and which 
suggested that it could also work well on photographs of 
cave paintings.

DStretch® has been developed to process Red–Green–
Blue (RGB) camera pictures only. Since only three visible 
bands are available, its ability to separate and enhance 
different information is limited. Most standard cameras 
work with RGB bandpass filters in a Bayer mosaic cover-
ing the 400–410 to 670–690 nm range (at 2% Green max-
imum, [31]), i.e. about the human eye photopic sensitivity 
range (~ 420–675 nm at 2% of eye sensitivity maximum, 
[32]) which is limited to a very small portion of the whole 
electromagnetic spectrum. This feature presents a severe 
limitation when attempting to detect remaining paint-
ing pigments invisible to the naked eyes. Hyperspectral 
imaging (HSI) technology may be used for this challeng-
ing application by recording hundreds of bands across a 
wider spectral range (see e.g. [33]). Those bands are con-
tiguous, narrow and regularly sampled and are not lim-
ited to the visible part of the spectrum. HSI provides a 
well sampled spectral signature at each pixel of the image 
creating a three-dimensional data cube or hypercube. A 
frame hypercube is composed by a sequence of images 
each corresponding to individual spectral bands acquired 
by the camera (Fig. 1).

After several generations of multispectral imagers (with 
only a few wide and specific spectral filters), HSI has been 

Fig. 1  In a hyperspectral imaging’s pushbroom mode, the camera scans the surface line by line and record a full spectrum at each pixel location. 
An image at each wavelength forming a 3D data cube is obtained (Two spatial dimensions and one in the spectral dimension) (adapted from [34])
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developed for space exploration missions since the late 
1980s (French ISM instrument on the Phobos missions, 
[35]) and on aircraft since the 1990s and then on Earth’s 
observation satellites since the late 2000s [36]. Pres-
ently, hyperspectral cameras are used indoor (laboratory, 
industry…), in the field and now often mounted on UAV 
platforms. They can be classified according to the meth-
odology by which these sensors build the hypercube. A 
pushbroom (or line scan) sensor records images line by 
line in motion (Fig.  1), while spectral scan instruments 
record single images for each spectral band selected 
sequentially in time, and snapshot hyperspectral imagers 
record the image at all wavelengths at the same time. For 
about two decades HSI have been more and more widely 
used for various application including geology [33, 37], 
industry, environment, agriculture [33], agri-food, foren-
sic [38], biotechnologies and medical diagnosis [39], as 
well as art painting where it is becoming an essential tool 
for the historical study of the technical realization of the 
paint layers and underlying material of the artwork [40–
44], their restoration [45, 46], as well as for their expertise 
[47]. The HSI technique strongly improves the collected 
information in the spectral dimension (to the detriment 
of spatial resolution) and complements the pioneering 
studies using multispectral imaging and pulse-compres-
sion thermography at high spatial resolution, developed 
in particular in the field of art work studies [48, 49].

Each painting pigment has its unique composition 
and texture and therefore reflects sunlight according 

to its characteristic spectral signature over the elec-
tromagnetic spectrum (see e.g. [50]). However, rock 
paintings undergo physical, chemical, biological and/
or anthropic alterations that alter their visibility, i.e. 
its contrast relative to the underlying rock. Neverthe-
less, we can expect that its distinctive spectral pattern, 
fully sampled by an HSI, is still recognizable at least in 
some spectral ranges and may detect the presence of 
tiny amounts of pigment. Because of both the increased 
spectral range and the number of measurement chan-
nels, HSI can provide a larger amount of information 
that may allow us to identify the screened materials, 
and separate them from the underlying rock, based 
on their chemical composition rather than only their 
remaining perceived visible colors. As an example, the 
spectrum of a very thin layer of red pigment painted 
on a flat slice of brown carbonate rock compared to 
the VNIR spectrum (Visible-very Near InfraRed: 400–
1000 nm) of the rock itself [50] is shown in Fig. 2. The 
spectral signals present clear spectral and photometric 
differences between the painted and the non-painted 
zones, in particular above 650  nm, while the simu-
lations of the RGB signal of a classical digital camera 
(Canon 20D) present only a very small difference in 
hue (~ 6%) and radiometric brightness (average ~ 10%). 
Such a difference may be not significant enough on a 
more inhomogeneous rock wall because spatial varia-
tions of rock texture and composition, or the lightning 
nature and orientation can also produce it. It should be 

Fig. 2  Comparison between spectra of VNIR hyperspectral imaging and signal of classical RGB camera for typical rock painting pigments. 
The high-resolution reflectance spectra measured on a very thin layer of red ‘Beauregard’ pigment (red) painted on a carbonate rock, and the 
non-painted rock itself (brown) are plotted with a continuous line (left scale) [50]. The large dots are simulations corresponding to the RGB signal 
of a digital camera (Canon 20D, [31]) extracted from these spectra by convolving them with its filter band passes (dotted lines at the bottom, right 
scale) with ‘error bars’ representing the full width at half maximum of the three filters. The bottom black curve is the total photopic eye sensitivity 
[26]
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noted that the perceived brightness difference between 
the paint and the substrate in Fig.  2 is larger (~ 25%) 
because the photopic eye sensitivity is peaking near the 
green where the brightness difference is the largest, in 
that specific case.

The numerous spectral channels of an HSI camera 
should also provide a better discrimination between 
the various pigment materials used in a polychromic 
painting, even between paints of very similar colors in 
a 3-channels RGB image [41, 45, 46]. Finally, we can 
also expect detection of underlying paintings due to the 
large transparency windows of numerous mineral pig-
ments in the very near (700–1000 nm) and short-wave 
infrared ranges (SWIR:  1000–2500  nm). The use of 
these infrared wavelength ranges for revealing under-
drawings and pentimenti are already well established 
for art work inspection [48].

Until now, studies of cave art have used RGB cameras 
and image enhancement tools (DStretch® plug-in for 
example) to help identify images that have sometimes 
become invisible to the naked eye and to make a survey 
[24, 25, 27]. Multispectral imagery, mostly by adding 
channels in the Near-IR [42], or using true multispectral 
instruments [51] have shown the advantage to extend the 
wavelength range outside the visible spectrum to study 
artwork. This technique has been discussed since a long 
time for rock painting [52] but only tested up to now 
[53–57]. In particular, Bayarri in his PhD, appears to have 
performed 5-band multispectral measurements in both 
the Near-IR (< 2500 nm) and mid-IR (> 2500 nm) ranges 
[56].

To our knowledge, only one group has done pioneer-
ing work with VNIR hyperspectral imaging, to study pre-
historic rock painting in two Spanish caves [56–60]. They 
used four sets of three lamps for the illumination of the 
panels. From their analysis of some panels painted on the 
limestone wall of the cave of El Castillo (Spain) they were 
able to identify 76% more figures, some of them below a 
calcite layer, and to differentiate between slightly differ-
ent paints. They concluded that hyperspectral imaging 
could become an efficient tool for the recognition of fig-
ures, coloring matter and state of conservation.

The objective of this study is to show what kind of use-
ful additional information VNIR HSI imaging can bring 
in the case of rock painting on yellow-reddish oxidized 
sandstone walls measured in shaded shelters, compared 
to standard RGB cameras. In particular we are focus-
ing on the capacity of HSI to detect invisible/barely vis-
ible figures, to extract the pigment distribution from the 
rock texture pattern and to separate the different paint 
layers. ‘Visual simulations’ using only the visible range of 
the HSI data is out of the scope of this paper. The images 
we provide are B&W or ‘false color’ synthetic images to 

best display to the eye the ‘invisible’ and mathematically 
transformed spectral information contained in HSI data.

As an application case a lightweight portable VNIR 
HSI camera has been used in the Sahara, i.e. in a par-
ticular rough field, to take pictures of large painted sur-
faces using an HSI without special lighting, just as would 
be done with a regular camera. The aim was to allow a 
quick and easy implementation for extensive non-contact 
imaging measurements and thus the possibility of explor-
ing hard-to-reach areas. This paper presents the meas-
urements and the analysis of a selection of painted panels 
of increasing complexity and will draw conclusions from 
a remote sensing point of view on the detectivity, sepa-
rability and extraction of pigments, but will not address 
any archeological consideration or artistic interpretation 
of the highlighted figures.

Materials and methods
Studied rock painting panels
The panels used for these tests are located in central 
Sahara. If many of them are well-preserved, many more 
are very faded (Fig.  3a) because they were painted on 
the walls of open rock shelters (Fig. 3b). Among factors 
that may affect the conservation state of those paintings 
are the low rainfall and the rising temperatures [61, 62] 
which appear to have increased in recent decades. This 
accelerated climatic deterioration could have a dou-
ble effect: on the one hand, to accentuate the process of 

Fig. 3  An example of a faded rock paintings which is analyzed in this 
study (a). View of a typical rock shelter (b)
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flaking of the walls used as support to the paintings, by 
a phenomenon of desiccation, and on the other hand, by 
increasing the intensity of the abrasion related to the cor-
rasion, i.e. erosion by the action of sand grains carried by 
winds on the most exposed walls [19]. Additional degra-
dations in some areas come from modern tagging over 
the painted figures.

Data acquisition using classical RGB camera
Highly portable RGB cameras were used to meet the dif-
ficult field conditions and among them, a Samsung galaxy 
S21 integrated camera. This camera has three multi-rear 
cameras with several functions. We used the 64 Mpx 
f/2.0 telephoto camera with 1.1 × optical zoom to take 
pictures of rock paintings (Fig. 21a).

DStretch® process from classical RGB camera
Different types of stretching algorithms (decorrelation 
stretch (DS), photographic stretch, saturation stretch, …) 
and transformation algorithms (PCA, ICA, MNF) may 
be applied to RGB images to enhance the information 
it contains. Some comparisons have been already made 
between DS and PCA, showing that the later was slightly 
more efficient [63]. We made some tests of all these algo-
rithms on several of the images presented below and 
finally decided to use only decorrelation stretch through-
out this study by using the DStretch® software, the only 
algorithm/software widely used as a reference tool by 
prehistoric archaeologists. Thanks to its flexibility in 
use and its optimization to the specific problem of rock 
painting it provides among the best results when faint 
paints are present. In some cases, ICA or MNF trans-
formations gave slightly better results in terms of figure 
contrast or paint-rock separation than DStretch® but 
in none case they allowed to detect the invisible figures 
highlighted by the analysis of the HSI data presented in 
Sect. “Results”.

Dstretch enhances the color separation in images with 
high interchannel correlation. If one views the pixels 
from 3 channels of a RGB photo as 3-vectors, this is done 
by first finding the linear transformation that results in 
removing the correlation among the vectors in the trans-
formed space. This is an eigenvector problem, and can 
be considered of as a rotation of the coordinate system 
of the original vector space. Within this rotated space, 
each component is rescaled (i.e. contrast stretched) by 
normalizing the variances of the vectors. Then the rota-
tion that returns the vectors to the original coordinate 
system is applied. Both of the rotations and the variance 
normalization step can be described by matrix and vec-
tor operations, and can be combined into a single math-
ematical operation that operates on the input photo and 
produces the decorrelation stretched output. The result 

of the process is an output image whose pixels are well 
distributed among all possible colors, while preserving 
the relative sense of hue, saturation, and intensity of the 
input image [30].

With most image enhancement software, the result is 
very much related to the level of expertise of the opera-
tor. It can therefore be extremely variable, whereas with 
DStretch® it depends much less on the operator, at least 
at the first level of use, which is largely sufficient in most 
cases. This allows for more objective and easily reproduc-
ible results, which is essential for an accurate study of the 
art [10, 17]. These twenty-three color spaces are currently 
defined as standards while processing rock paintings with 
DStretch®. However, image enhancement has the built-in 
limitation of the three RGB measurement channels, and 
thus strongly depends on the intensity and visual color of 
the paint.

Data aquisition using HSI Specim IQ camera
Field captures of rock paintings were performed with 
a SPECIM IQ  (Fig.  4), an HSI system operating in the 
VNIR, which is based on an internal line scanner pro-
cess, i.e., push broom principle. It covers the whole wave-
length range 400–1000  nm at a spectral resolution of 
7 nm. Its characteristics are summarized in Table 1 [64]. 
A 1.2 Megapixels RGB context image with slightly bet-
ter resolution fully including the HSI field of view is also 
recorded simultaneously with the ‘viewfinder’ camera. 
This context image is taken from virtually the same point 
of view (2.5 cm above the HSI lens) and with exactly the 
same illumination. It will be used, raw and processed 
with DStretch©, to compare with the HSI results.

Table 1  Characteristics of the SPECIM IQ hyperspectral imaging 
system and its context RGB camera [64]

Hyperspectral imager SPECIM IQ

Sensor type CMOS

 Spectral range 400–1000 nm

 Spectral resolution 7 nm

 Spectral bands 204

 Image size 512 × 512 px

 Focal length 21 mm

 Field of view (fixed lens) 31 × 31°

 Imaged wall @ 1 m 55 × 55 cm

 Spatial resolution @ 1 m 1.07 mm

 Focus range 15 cm–infinity

 Weight 1.3 kg

Context RGB image
 Image size 1280 × 960 px

 Imaged wall @ 1 m 110 × 82 cm

 Spatial resolution @ 1 m 0.85 mm
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As common for any hyperspectral measurement, a 
suitable lighting providing a continuous spectrum over 
the wavelength range of interest is required. In our 
case, to avoid the complex and power consuming use 
of artificial lighting in the field, our illumination source 
was mostly sunlight scattered by the perfectly clear sky 
and the surrounding landscape since rock paintings are 
located on shelters’ walls. The sky contribution (more 
than 60% of the solid angle) provides a bluer light with 
strongly decreasing intensity in the very near infrared 
(40 times less Rayleigh scattered light at 1000  nm than 
at 400 nm) compared to the sun spectrum which, com-
bined with the decrease of sensitivity above 700  nm 
of the CMOS detector, limits the useful spectral range 
below 920  nm. The spatial variation in intensity across 
the measured area remains limited (a maximum of a 
few percent estimated in a particular case from meas-
urements of the Spectralon® panel at different places in 
the field of view) and very smooth because of the diffuse 
multidirectional illumination and the small and relatively 
flat measurement area (typically 50 × 50 cm) compared to 
the size of the rock wall of the shelters (several meters). 
The spectral variation of the illumination is also faint and 
smooth across the image. The temporal variation during 
the frame acquisition (< 2  min) is also negligible as the 
weather was always offering a perfectly clear sky.

Here after, we present some key information to repro-
duce our technical approach. The measurement process 
includes seven steps:

1.	 Reference panel: after selecting the field of view of 
the HSI camera, a white reference panel (Spectralon® 
99%, 10 × 10  cm) is positioned next to the painted 
wall in the field of view of the instrument to allow to 
capture the spectral characteristics of the wall light-

ing at the same time as the image (simultaneous 
white reference).

2.	 Focusing: the hyperspectral camera is then focused 
on the target using the viewfinder camera, i.e., a small 
RGB camera situated just above the spectral camera, 
with identical viewing direction but larger field of 
view. The focusing is done manually by highlighting 
sharp edges.

3.	 Context image: to overlay the spectral and viewfinder 
camera images their parallax is corrected either auto-
matically or manually.

4.	 Integration time: then, the integration time is 
adjusted (in the range 1–500  ms). The viewfinder 
camera image provides an evaluation for the integra-
tion time of the spectral camera but a manual opti-
mization was always made in order to use 80–90% 
of the capacity of the detector while being cautious 
about saturation, especially in the white reference 
target.

5.	 Recording: after these initial adjustment steps, the 
image recording process is triggered. At first, a dark 
reference image representing the sensor background 
noise and read noise, without incoming light is 
recorded automatically. Then, the line scanner starts 
the actual data acquisition.

6.	 Validation and reference selection: after the full 
512 × 512 pixels image is scanned, the focus and pos-
sible saturation or under-exposition are checked in 
the data validation view with a synthetic RGB image 
derived from the hyperspectral image cube and mini-
mum and maximum intensity pixel histograms. If 
the image is validated, part of the white area of the 
Spectralon® reference target (typically 2000–8000 
pixels depending on camera-wall distance) is then 
selected by thresholding the intensity of the image 
followed by a pixel connectivity algorithm.

7.	 Calibration: after removal of the dark background 
the calibration process converts the image cube in 
‘reflectance factor’ unit by dividing the spectra of all 
pixels by an average spectrum of the selected area of 
the Spectralon® reference. All the data are automati-
cally stored, the raw and calibrated hyperspectral 
data cubes, the dark and white reference spectra, an 
RGB preview of the HSI data and the RGB context 
image.

Hyperspectral data analysis
A set of hyperspectral reflectance data obtained on 
various sites have been analyzed using different stand-
ard tools available in the standard ENVI® hyper-
spectral image software (Version 5.5, L3HARRIS 
GEOSPATIAL™). The results have been compared to 

Fig. 4  The Specim IQ camera in the field measuring rock paintings
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the simultaneously recorded context RGB image (with 
only 20% better spatial resolution, but identical lighting 
and viewing geometry) as well with very high-resolution 
images of the same scenes recorded by the different cam-
eras (listed in 2.2) and analyzed with DStretch®.

Several unsupervised mathematical transformations 
aimed at extracting and packing the information con-
tained in hyperspectral image cubes have been tested and 
compared:

•	 Principal Components Analysis (PCA), with covari-
ance matrix.

•	 Independent Components Analysis (ICA), with Log-
Cosh contrast function and 2D spatial coherence 
sorting.

•	 Minimum Noise Fraction Transform, (MNF), with 
noise statistics from whole image.

They are called ‘rotations’ as they aim at changing the 
base on which the dataset is projected in order to reduce 
the dimensionality of the useful data (initially 204 spec-
tral information planes, one at each wavelength) and to 
segregate the noise in the data. Their working hypotheses 
on the initial content of the data are however different 
and the recently developed ICA [65] is expected to be the 
most efficient transformation to separate different lay-
ers of information, i.e. different types of paintings as well 
as rock composition and texture. This transformation is 
generally used for ‘blind source separation’, with no a-pri-
ori information on the mixing. It assumes non-Gaussian 
distribution of the independent information sources, 

which is typical of natural hyperspectral datasets, and 
uses high-order statistics to reveal interesting but faint 
features or covering only a small portion of the image.

These transformations are frequently used in space 
exploration and remote sensing data analysis [e.g. 65] 
and more recently PCA was introduced and commonly 
used in art work studies [42, 43, 63]. In rock art PCA was 
used for analysis of camera images [52, 63, 67] and one 
group [56, 57, 60, 68] used all these algorithms in paral-
lel on hyperspectral data to analyze rock paintings but 
did not discussed their relative advantages. However, 
Cerrillo-Cuenca et al. [69] very recently made a thorough 
comparison of PCA and ICA on camera images of super-
imposed rock paintings. They concluded that “ICA accu-
rately separates panels with more than one type of colour, 
while PCA achieves a lower degree of separation”. They 
also showed that “in scenes with monochrome depictions, 
ICA tends to be slightly more effective in separating the 
pigments from the rock.”

But before running the transformation, several pre-
liminary analyses of the data cube and a few conversions 
are necessary in order to optimize their results. First the 
data cube needs to be rotated 90° clockwise to go back to 
the original vertical view. Then the reference target and 
its shadow, which may adversely alter the image statis-
tics of the rock painting due to their extreme and con-
stant brightness values, needs to be removed by applying 
a spatial mask to the image. Finally, from local statistics 
on the very homogeneous spectra of the reference target 
(Fig.  5) coupled with an analysis of a selection of indi-
vidual spectra (Fig. 10), we can select the spectral range 

Fig. 5  Statistics on the spectra of the reference target (~ 2700 pixels) with mean (black), mean ± standard deviation (green), min and max values 
(red) showing the increasing noise below 410 nm and above 920 nm. Only the central part of the spectrum (dashed lines: 410–920 nm) with 
standard deviation < 5% is kept for the hyperspectral data analysis
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in which the signal-to-noise ratio is large enough while 
keeping enough channels to preserve most of the useful 
information and to run efficiently the ICA transforma-
tion. Removing the noisiest channels should improves 
the detectivity of subtle painting that otherwise may 
remain buried in noise. The first five spectral channels in 
the deep blue (< 410 nm) and the 923–1000 nm very near 
infrared range receive very little light and are removed 
from this analysis. The hyperspectral data cube is thus 
restricted to the 410–920  nm range, i.e. 172 spectral 
channels (instead of 204). Tests on a few data sets showed 
that both these spectral and spatial filtering, commonly 
used in the analysis of space exploration hyperspectral 
images [65], significantly improved the quality of the 
results in particular in terms of noise segregation.

Figure 6 presents the comparison between the different 
synthetic results obtained from the PCA, ICA and MNF 
mathematical transformations for one of our case stud-
ies (panel #2, see part “Panel #2: separation between a 
complex wall and pigments”). The different transforma-
tions applied on the HSI data, because of the numerous 
spectral channels and extended range, not only efficiently 
separates the large-scale effects of the rock texture from 
the painting patterns but also removes a large fraction of 
the ‘noise’ in the components containing the pigment and 
rock information. This ‘noise’ might be a purely instru-
mental noise but it can be also high spatial frequency 
fluctuations of the reflected signal due to the microscopic 
texture of the rock inducing random local illumination 
and reflection angles, micro-shadows as well as color var-
iations at the pixel scale.

From a detailed comparison between the results of 
ICA and the other transformations, it appears that the 
PCA and MNF transformations are not able to separate 
as well the different painting layers, although MNF can 
possibly remove more efficiently the noise from the first 
components. In particular, ICA provides more contrasted 
components with less background ghost information 
from the other paints or the rock wall. This is clearly seen 
when looking at the two major components (lines 2 and 3 
of Fig. 6) which well separate the two main pigments with 
a smooth background for the ICA while they contain 
ghost information for PCA and MNF. All the pigment 
information is also spread over more than 6 components 
for PCA and MNF while it is concentrated in only 4 or 
5 for ICA. This extends to hyperspectral data the higher 
separation efficiency recently found for ICA compared to 
PCA on RGB images of rock paintings [69].

Comparison with the DStretch® processing of the 
exact same area of the context RGB image illustrates the 
same difficulty in separating paintings and rock: although 
one component contains only information on rock wall 
texture and composition (#3, line 4) and contrast is 

enhanced in the two other components, there is still 
a strong correlation between them. Hence, there is no 
effective separation of the pigments, which is mathemati-
cally unavoidable in this case due to the limited informa-
tion contained in the 3 RGB channels. As component #3 

Fig. 6  Comparison between the results of different transformations 
(ICA, PCA, MNF) performed on one set of hyperspectral data (panel 
#2, see “Panel #2: Separation between a complex wall and pigments”) 
and with its context RGB image processed with DStretch®. Columns: 
(1) ICA, (2) PCA, (3) MNF, (4) DStretch®. Line: (1) RGB synthetic image 
made with the 3 most significant components. Lines (2 to 7) The six 
most significant components ordered to match as well as possible 
between the different transformations. For DStretch® there is only 3 
components but an improved RGB combination removing the rock 
wall contribution is given in line 5 (see text). Scale provided by the 
reference 10 cm square
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only contains wall information, a DStretch® RGB image 
with increased contrast can be obtained by combining 
only the 2 components containing pigment information, 
but this did not solve the problem of their separability.

In the following, we mostly used ICA transformation to 
analyze the hyperspectral data. We first ran a few tests by 
varying the different free parameters of the iterative ICA 
transformation which control its convergence (100 itera-
tions with stabilization, contrast function = LogCosh, 
change threshold = 0.0001) but decided to keep their 
standard values as they appeared to provide good results 
with little improvement and much larger calculation 
times when the convergence constraints are significantly 
increased. At the end of the calculation, the algorithm 
orders the ICA components in decreasing order of their 
spatial coherence (an option in the ENVI algorithm), 
large scale variations first and purely random noise at 
the end. This facilitates the separation of those contain-
ing useful painting or rock wall information from those 
mostly or only containing instrument artefact or noise.

From a series of preliminary analyses, all the informa-
tion that we can identify by visual inspection of the data, 
as due either to the rock wall or to the paintings, is always 
contained in the first 10–15 components of the ICA. We 
thus decided to conservatively run the iterative process of 
the ICA transformation only on 30 components, in order 
to reduce the processing time by a factor of 30 (from 
about 15 to 0.5  min on a powerful 64-bit laptop). The 
comparison of the results with a full ICA transformation 
showed no detectable loss of information.

Another tool we will use in this paper is the extraction 
of end-member spectra characteristic of the purest pix-
els of each ICA component of interest in order to com-
pare their average spectra and draw conclusions from 
their differences. They will be selected manually with 
the help of a thresholding either of the extreme values of 
each ICA component, and their mean values and statis-
tics will be estimated, or in n-dimension using the ‘Pixel 
Purity Index’ (PPI) and n-D visualizer tools. Finally, we 
will test several spectral classification algorithms, two 
unsupervised: IsoData and K-means; as well as the super-
vised Sample Angle Mapper (SAM) algorithm. All these 
generic tools are available in the ENVI software (and in 
many others).

Results
Here, we present several results obtained by ICA trans-
formation on a selection of six typical or challenging 
painted scenes (called “panel” hereafter) of increasing 
complexity, and compare them with camera images, 
at both equivalent and very high resolution, processed 
with DStretch®. These comparisons present differ-
ent situations for which hyperspectral images bring an 

improvement compared to RGB images as well as the 
type of new information which can be extracted.

The first result is that the ICA transformation concen-
trates most of the useful information contained in the 
selected 172 spectral channels into only 6 to 12 inde-
pendent components depending on the complexity of 
rock wall and diversity of paintings in the image, with 
the different paintings typically decomposed into 3 to 7 
different components mostly depicting the different pig-
ments used. All the remaining components contained 
different types of noise sometimes with a few ones mixed 
with faint ghosts of rock wall or painting information 
already present in the previous components.

Panel #1: simple scene
In Figs. 7 and 8, a typical simple case is presented: a sin-
gle scene (panel #1) probably painted with a single pig-
ment on a relatively smooth and homogeneous rock 
wall. Indeed, the ICA transformation of the hyperspec-
tral image concentrates most of the painting information 
in a single component with only minor local variations 
depicted in two other components. Those components 
add little information, just a slightly different hue of pig-
ment in the upper dog, which is confirmed by comparing 
average spectra of the different figures. When combined 
in a false color RGB image and compared to the RGB con-
text image processed with DStretch®, it becomes clear 
that the hyperspectral data allows a better extraction of 
the spatial distribution of the pigment. Indeed, the main 
ICA component has a much higher contrast with less 
background noise than the corresponding component in 
the DStretched image. This can be highlighted by thresh-
olding and stretching the channel of the DStretched 
image containing most of the information on the paint, 
in order to best select the pigment, i.e. removing as much 
noise as possible without removing pigment information, 
and comparing it with the same process applied to the 
main pigment ICA component (#1) (Fig. 7f ).

There is a noticeable gain in selectivity with the ICA 
component as witnessed, for example, by the better defi-
nition of the spokes of the wheel of the cart. This allows 
an easier pigment extraction, using only global image 
operations, and its superimposition on the original image 
(or on any other higher resolution RGB image) to restore 
the painting on the rock wall with a better, and possibly 
closer to initial contrast (Fig. 8).

A similar quality of pigment extraction can be achieved 
by using DStretch® and the same type of thresholding 
and stretching, but on a much higher resolution RGB 
image, such as the one in Fig.  9, with about 200 times 
higher resolution (one pixel in the hyperspectral data 
cube corresponds to about 14 × 14 pixels in this image).
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Panel #2: separation between a complex wall 
and pigments
Figure  10 provides an example of an effective separa-
tion between a complex shelter wall and pigments, as 
well as discrimination between two overlapping paint-
ings (panel #2). The two main paint components (ICA 
#1 and 5) are almost completely decorrelated, with only 
the seated character in the upper right quarter that 
appears in both components, but as a line drawing in 
component #5 and as a color filling in component #1. 
Two other components (#6 and 7) provide additional 
but more subtle information on the paintings with 
even fainter and noisier pigment information in com-
ponent #9. The rock texture is mainly segregated in 

components #3 and #4. Component #2 is more difficult 
to interpret given its spatial distribution, but may rep-
resent either the remnant of an older painting, or a par-
ticular texture of the rock. All other components, #8, 
#10 and above, are dominated by noise.

Figure 11 displays two end-member spectra of each of 
the two types of pigments identified, corresponding to 
ICA component #1 (dark red pigment) and #5 (orange 
pigment), as well as 2 typical spectra of the rock wall. The 
spectral differences between them can be recognized, 
mostly with a stronger absorption below 580  nm and 
between 750 and 880 nm for pigments, but are relatively 
subtle especially if one restricts the spectra to the sensi-
tivity range of digital cameras (typically 410–680 nm).

The spectrum of the uncertain ICA component #2 
has a less pronounced absorption below 580  nm than 
the two pigments and most of the rock wall. It mostly 
occurs where the wall is brighter, but only on part of 
these brighter area. It may be either an area of ‘fresher’ 
less oxidized rock (scraped off?) or covered with a fainter 
pigment, but apparently covered by the other pigments.

The resulting synthetic ‘painting’ RGB image using the 
two main ICA paint components (#1 and #5), together 
with the secondary component #7, displays different pig-
ments of the paintings much more clearly than the cor-
responding YWE DStretch® image (Fig. 10).

For this panel, which has at least 2 main pigments with 
possible local variations, we first tested two unsupervised 
classification algorithms, IsoData and K-means, but none 
of them gave satisfactory results on such a complex data 
set as only the dark red pigment was more or less cor-
rectly classified, but not the orange one which is more 
spectrally similar to the rock wall. We then tested the 
physically-based spectral classification algorithm Sam-
ple Angle Mapper (SAM) on the original spectra of the 
hyperspectral data cube and on both the MNF or ICA 
transformations. For the transformations we only used 
the first significant components (13 for MNF, 8 for ICA) 
containing information on pigments and rock wall and 
removed all the noise components. We then used the 
‘Pixel Purity Index’ (PPI) tool in ENVI to find the most 
spectrally pure (extreme) pixels in the hyperspectral 
image and the n-D Visualizer to manually select 6 groups 
of these end-member pixels. The supervised SAM algo-
rithm, using an n-D angle to match pixels to the selected 
end-member spectra, is then run on the corresponding 
data and its ‘maximum angle threshold’ parameter opti-
mized (to 1.0 rad) to classify most of the pixels of the pig-
ments and the rock wall in one of the 6 classes.

The results presented in Fig. 12 show that, as generally 
stated, the classification of the pigments (3 classes) on the 
MNF transformation (Fig.  12b) seems more efficient to 
remove noise than the one run on the ICA (Fig. 12a), but 

Fig. 7  Comparison of pigment extraction between DStretch® on 
RGB image (left) and ICA analysis on hyperspectral data (right) on 
a simple scene (panel #1). a Context RGB image. b Same image 
processed with DStretch® (YRD). d ICA transformation of the HSI 
image: the main significant component (#1) containing most of the 
information on the pigment used in the scene. e A false color RGB 
image using the main ICA component describing the pigment (#1) 
as well as 2 others recording small local variations (#2 and 6) (R = #6, 
G = #1, B = #2). c the channel containing most of the information 
on the paint of the above DStretched RGB context image with a 
threshold and stretch adjusted to select the pigment in the best way, 
while minimizing the presence of noise. f Same but for the main 
pigment ICA component (#1). Scale provided by the white reference 
10 cm square
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it also misses some faint painting especially in the ‘blue’ 
class. Increasing the value of the angle parameter would 
help include these faint paintings but will also dramati-
cally increase the amount of noise (from wall) in the pig-
ment classes. We should also note that the classification 
directly performed on the hyperspectral data cube (not 
shown) is not able to correctly extract most of the pig-
ments for this scene painted on a complex wall. A trans-
formation to concentrate the information and segregate 
most of the noise is thus really necessary before any 
classification.

However, we found that an alternative and more effi-
cient way to classify the pigments is to capitalize on the 

high separation power of ICA by simply thresholding its 
main components depicting the pigments (Fig. 12c), the 
corresponding end-members being the most extreme 
pixels of each ICA component. The results show that this 
method provides a slightly better recovery of the pig-
ment distribution obtained by SAM classification of ICA 
(Fig.  12a) and much better than the classification per-
formed on the MNF, but with a noise level as low as that 
of MNF (Fig. 12b).

The first advantage of this method is that it is easier 
(interactive on most software), faster and more objec-
tive, to determine the parameter value that is the best 
compromise between pigment separation and noise 

Fig. 8  Extraction and restoration of the painted pigments (panel #1): a original synthetic RGB image from the hyperspectral data (R = 600, G = 550, 
B = 450 nm). b Same image with the extracted pigment (ICA component #1) superimposed. Scale given in Fig. 7

Fig. 9  Comparison with a high-resolution image: a part of a high resolution RGB image (~ 37 Mpx, ~ 40 µm/px) covering about the same area as 
Fig. 7 and processed with DStretch® (LRE). The shot angle and point of view of the image were slightly different but illumination was the same as for 
the HSI image. b The green channel of the DStretched image with a threshold and stretch adjusted to best select the pigment. Scale given in Fig. 7
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contamination. Another advantage is that it has not the 
restriction of the ‘exclusion principle’ of all classification 
tools (one pixel can belong only to one class) and thus it 
allows to have pixels in two or more classes where two 
pigments are mixed or superimposed, an important 
information that should not be discarded. In Fig.  12c it 
is particularly the case of the human figure in the top 
right part of the scene where a drawing with the orange 
pigment (ICA #5, blue class) is superimposed with solid 

dark red pigment (ICA #1, red class), unlike almost eve-
rything else on the scene (see also Fig. 10e, f ). And finally, 
the extraction of each pigment can be optimized by its 
own threshold value of the ICA component, contrary to 
SAM classification (and many others) where a unique 
and common value applies for all classes.

Panel #3: highlighting invisible/barely‑visible figures 
on complex rock wall
Another interesting example is a strongly oxidized 
brown–red wall with barely visible traces of red pigment 
on top of the image (panel #3, Fig.  13). The DStretch® 
(YUV) processing of the context RGB image allowed us 
to confirm the presence of several figures at the top of the 
image and possibly a bovine in the middle-left. The ICA 
analysis of the HSI image clearly displays these figures 
in components #2 and #7, but components #5 and #4 
uncovered in a very clear way a few large anthropomor-
phic figures belonging to another layer of painting that is 
unobserved by eye. These figures remained undetected 
on the context RGB image despite a whole set of analy-
sis attempts using various options of DStretch®, as well 
as different types of stretching algorithms (Photographic 
stretch, Saturation stretch, Decorrelation Stretch), trans-
formation algorithms (PCA, ICA, MNF) and anomaly 
detection algorithms (RXD, UTD, RXD-UTD) available 
in ENVI software. Only the ’elongated head’ of the main 
anthropomorph can be barely recognized a posteriori in 
some of these transformations. With the ICA of the HSI 
data the different types of rock texture and composition 
are also well separated in components #1, #3 and #6.

Even with a high-resolution camera image (60 Mega-
pixels) covering part of the hyperspectral dataset and 
processed with DStretch® (IDS) or the other algorithms 
we can hardly recognize some of the ‘anthropomorphs’ 
elements, even knowing where they should be located 
in this stretched image (Fig.  14). They only have a very 
slightly different orange hue in this stretched image com-
pared to the surrounding oxidized rock with strongly 
variable hues.

A comparison of end-member spectra of the three main 
ICA components of panel #3 and of the rock wall (Fig. 15) 
shows only little variability between the pigments and the 
oxidized rock wall, in particular in the 400–600 nm range 
where the oxide absorptions are very similar among the 
spectra. The spectral features that should mainly contrib-
ute to the detection of the painting of the large anthro-
pomorphs are most probably the slightly more marked 
shoulder around 590 nm and the flat part of their spectra 
between 770 and 850 nm which strongly contrasts with 
the steady spectral slope of the rock wall. Moreover, its 
separation from the other pigments occurs in the visible 
range (stronger slope and curvature between about 500 

Fig. 10  Separation between a complex shelter wall and pigments, 
and discrimination between two overlapping paintings (panel #2). a 
Context RGB image. b Synthetic RGB image of the HSI data (R = 600, 
G = 550, B = 450 nm). Right: ICA transformation of the HSI image: 
the 4 most significant of the 8 components containing information, 
the top two (e, f: ICA components #1 and 5) separates two different 
pigments. g Depicts an unidentified component (#2): paint or wall? h 
ICA component (#4) that extracts part of the complex texture of the 
underlying rock wall. d Synthetic RGB image using 3 ICA components 
(R = #5, G = #1, B = #7) displaying the different pigments (in red and 
green) much more clearly than the corresponding DStretch® (YWE) 
image (c). Scale provided by the white reference 10 cm square
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Fig. 11  End-member spectra (average of 30 to 100 pixels) of the orange pigment (red, orange) and dark red pigment (dark and light blue) and 
typical spectra of the rock wall (black and grey) taken from the hyperspectral image of panel #2 presented in Fig. 10

Fig. 12  Classifications of the pigments from the hyperspectral image of panel #2. a Run on the 8 first components of the ICA transformation. b Run 
on the 13 first components of the MNF transformation. In both cases 6 groups of end-members pixels were selected with the ‘Pixel Purity Index’ 
(PPI) and n-D visualizer tools in ENVI before Sample Angle Mapper (SAM) classification. Only the 3 classes depicting pigments are shown here. c 
Classification obtained by thresholding the 2 main ICA components (#1 and 5) of the painting. The blue class (orange pigment) is plotted over the 
red (dark red pigment). d Same superimposed on the context image. All 3 classification were post-processed with a slight ‘sieving’ algorithm (with a 
pixel connectivity of 8 and a minimum size of 4) to clean part of the random noise disconnected from the painting
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and 580 nm) where the anthropomorph’s pigment has a 
color and a spectrum very similar to the rock wall. This 
explains why an RGB camera cannot distinguish these 
figures from the oxidized background wall.

For a better assessment of the relative contributions of 
the visible and near-infrared regarding the figures versus 
the rock wall respectively, we performed ICA transfor-
mations on different spectral subsets of the HSI data, i.e. 

the visible spectrum only and the near-infrared spectrum 
only.

The transformation over the visible spectrum was 
limited to the 93 spectral channels contained in the 
photopic sensitivity range of the human eye (420–
675  nm, i.e. for sensitivity > 2% of its maximum [32]). 
While still clearly identifying the anthropomorph fig-
ures, their contrast with the surrounding is partly 

Fig. 13  Highlighting invisible figures on complex rock wall (panel #3). a Original context RGB image. Right d, e, f: ICA transformation of the 
HSI image: the 3 most significant of the 7 components with information (ICA components #7, 2 and 5) clearly separating three different 
pigments. c Synthetic RGB image of the HSI data using the 3 ICA components (R = #7, G = #5, B = #2) displaying the different pigments. The large 
anthropomorphs are mostly invisible in the corresponding DStretch® (YUV) image (b), only the ‘elongated head’ of the main anthropomorph can 
be barely recognized a posteriori. Scale provided by the white reference 10 cm square. The rectangle in the image b locates the high-resolution 
image of Fig. 14
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reduced and some small parts are missing (Fig.  16b). 
Other figures, such as the bovine in the middle left 
of the image and the series of characters above, are 
much less clearly detected using only the visible range 
(Fig. 16c, d).

The ICA transformation restricted to the near-infra-
red, performed over the 73 spectral channels of the 
700–920 nm range, displays all painted figures in a sin-
gle component with the anthropomorphs less sharply 
defined but containing the missing parts in the visible 

range, and with all the other painted figures with high 
contrast relative to the rock wall (Fig. 16e).

These tests show that the visible and near-infrared 
ranges contribute in different but complementary ways 
to enhancing the contrast and separation of the figures in 
the full spectrum result. The visible range appears to play 
a major role in the separation between different painted 
figures while the infrared range mostly boosts the con-
trast between the figures and the rock wall.

A final test, aimed at better understanding the limita-
tion of RGB images in detecting very faint figures, was 
performed using only the three spectral channels cor-
responding to the RGB peak sensitivity wavelengths of 
either the eye (~ 421, 530, 558 nm) or the camera (~ 470, 
530, 600  nm). In the case of the eye peak wavelengths 
the ICA transformation slightly highlights the anthro-
pomorph figures (Fig. 16f ), while in the case of the cam-
era, only the series of characters on top left of the image 
is highlighted. The large width (60–100  nm) and strong 
overlap of the RGB sensitivity curves of the eye and of 
standard cameras with respect to the narrow spectral 
bands (7 nm wide) used here are most likely the main fac-
tors that prevent them from distinguishing pigments that 
have both close color and very low contrast.

Panel #4: discovery of indistinguishable painting 
and separation of paint layers
An even more complex situation is represented by the 
hyperspectral image of panel #4, where a Barbary sheep 
is easily seen with naked eyes, as well as two green-
ish lines on the top left quarter of the image (Fig. 17a). 

Fig. 14  High resolution camera image (60 Mpx, ~ 65 µm/
px) processed with DStretch® (IDS) and covering part of the 
hyperspectral dataset (panel #3) presented in Fig. 13. The point of 
view is slightly different than for the HSI image. Even knowing where 
the ‘anthropomorphs’ painting occurs in this stretched image we can 
hardly recognize some of its elements from the very slightly different 
orange color compared to the surrounding oxidized rock. Scale and 
location given in Fig. 13

Fig. 15  End-member spectra (average of 40 to 110 contiguous pixels) of the orange pigment (orange), the dark red pigment (light and dark red) 
and the anthropomorph pigment (dark and light blue) and typical spectrum of the rock wall (green) selected in the hyperspectral image of panel 
#3 presented in Fig. 13
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Processing the RGB context image with DStretch® 
confirmed these observations but did not reveal more 
figures. The ICA analysis of the corresponding hyper-
spectral image (Fig.  17) reveals 3 superimposed 
paintings or drawings separated in 7 information com-
ponents (#1 to #3, #5 to #7 and #9). In addition to a 
part of a second Barbary sheep on the right side of the 
image, the outline of a large anthropomorph, of which 
only the tail and part of the back are visible in the cam-
era and DStretched images, now more fully appears all 
around the first Barbary sheep. However, some parts of 
the contour lines of the anthropomorph are still hidden 
below the two Barbary sheeps making this outline very 
spotty at some places and surrounded by a variety of 
rock colors and more recent paintings. DStretch® can-
not highlight it as its statistics for stretching focuses on 
the dominant colors of the image in terms of covered 
surface, i.e. the Barbary sheep painting and the highly 
variable rock wall colors.

The outline of the Barbary sheep is also well separated 
in the ICA components from its filling, probably drawn 
with another pigment or technique. All these paintings 
can be represented in a false color image by combin-
ing 3 of the ICA components (R = #3, G = #6, B = #9) 
(Fig.  17d). It shows that in addition to these main fig-
ures a few other painting, or part of paintings, are also 
present, such as a third horned ‘ghost’ left of the head 
of the first Barbary sheep (in green in Fig. 17d), or addi-
tional lines above the back and below the right hand of 
the ‘siemen’ anthropomorph (in faint pink in Fig. 17d).

There is also a ‘goat’ with thin horns and legs that looks 
like it is scraped on the rock (bright lines), partly over the 
Barbary sheep. It can be already guessed in the original 
context RGB image from some lines and area whiter than 
the rock and locally removing the pigments of the Bar-
bary sheep (Fig. 17a). However, the ICA transformation 
extracts its component with little contrast relative to the 
background. An MNF calculation was also run on this 
image, which provided a component with a better con-
trast and signal to noise ratio allowing us to better deter-
mine the outline of the ‘goat’. A false color RGB image of 
the 3 main MNF components (Fig. 17h) clearly shows the 
superimposition of the three paintings or drawings.

In the case of this panel the MNF transformation, 
although not efficiently separating the different pigments, 
provides interesting complementary results. In particu-
lar some of its components clearly display two or three 
of the superimposed paintings, more efficiently cleaned 
from the complex rock texture (Fig. 18).

The MNF components can be an additional help to 
understand the paintings organization and sequence, e.g. 
we can now spot a small figure behind the first Barbary 
sheep, inside the thigh of the anthropomorph, which is 
seen only in secondary painting components of the ICA 
(with fainter and noisier information) and thus not visible 
in the synthetic RGB images of the main painting, such as 
the two images of Fig. 17d, h. A specific analysis of these 
secondary component is necessary to highlight this fig-
ure (Fig. 19) and the MNF component provides a slightly 
sharper view.

Fig. 16  The main components of ICA transformations of the hyperspectral image of panel #3 performed on a, b the whole spectrum (410–920 nm, 
from Fig. 13), and on different subsets of the spectrum: c, d the visible spectrum only (420–675 nm), e the near-infrared spectrum only (700–
920 nm), and f, g the three RGB peak sensitivity wavelengths of the eye (~ 421, 530, 558 nm)
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The shape of the end-member spectra collected for the 
main four pigments provides an overview on how they 
can be differentiated (Fig.  20). Again, the main spectral 
features that should allow to separate between these 
pigments are located in the 500–650 and 750–900  nm 
ranges. In particular, the shoulder around 580 nm for the 

anthropomorph is shifted up by about 20 nm for the Bar-
bary sheep pigment, and in addition, it has a lower slope 
than typical surrounding rock below 500 nm and above 
590 nm. So, contrary to the anthropomorph of panel #3, 
its pigment can be clearly differentiated from the others 
and from the surrounding rock by its color. It is indeed 
the superposition of the other two drawings and the 
overall complexity of this panel that makes the outline of 
the anthropomorph of panel #4 very difficult to perceive. 
The difficulty is here more a question of detectability of 
the discontinuous silhouette of the anthropomorph than 
of visibility of its pigments.

As for panel #3, we also tested the relative contribu-
tions of the visible and near-infrared ranges by perform-
ing ICA restricted on these two ranges (not displayed). In 
the case of panel #4 the different figures are readily sepa-
rated using only the visible range, but the near-infrared 
seems to contribute better to recover the faintest paints 
with a more efficient separation from the rock wall.

The hyperspectral image presented above (Figs. 17, 18) 
is part of a series of three images which cover a larger 
part of panel #4 and depicts several superimposed scenes 
painted with different styles when analyzed with ICA 
and subsequently projected (with 2D-spline adjustment 
on a large number, ~ 40, of common anchor points) and 
merged on a high-resolution image of the same rock wall 
(Fig.  21). As a first approach the ICA transformations 
were performed independently on the three hyperspec-
tral images (with their own statistics) but they provided 
quite consistent components that can be easily matched.

The overall organization of this panel is very complex 
with numerous overlapping figures that probably belong 
to more than 3 layers. A complete analysis would need 
to also study in detail the other 5 components contain-
ing pigment information and displaying other fainter 
figures, but this is out of the scope of this paper. We can 
nevertheless point a few additional interesting results. 
In particular two other types of anthropomorphs, which 
can already be seen in the other parts of panel #4 in the 
DStretch® image (the Fig.  21c) are also well extracted 
and appear to be painted with a similar pigment as the 
first one. The ‘simen’ anthropomorph style, at the bot-
tom part of the panel, is however only partly seen in the 
DStretched image, its head and back being hidden by a 
large rock scarp clearly visible in the bottom quarter of 
the RGB image (Fig. 21a). In contrast, the whole figure is 
well seen in the ICA component despite the interference 
of this large rock default.

Panel #5: the case of white painting
A known difficult case where DStretch® struggles to 
improve contrast is the presence of faint white paints, 
due to a lack of tint. We tested the detection and 

Fig. 17  Discovery of an indistinguishable painting and separation 
of three layers of paints (panel #4): a original context image. Middle 
rows: ICA transformation of the HSI image: the 4 most significant 
components (b #3, c #9, f #6, g #1) of the 7 components that 
separate at least four different pigments. e ICA component (#4) of the 
‘cleaned’ rock wall. d False color RGB image using 3 of the pigment 
ICA components (R = #3, G = #6, B = #9) displaying two of the 3 
superimposed drawings (in red and blue-green). h False color RGB 
image using 3 components of a MNF transformation (R = #2, G = #3, 
B = #6) highlighting the superimposition of the 3 paintings. Scale 
provided by the white reference 10 cm square. The rectangle in the 
context image locates the zoom presented in Fig. 1
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separation of faint white painting to assess if a VNIR 
HSI instrument can better extract such colorless pig-
ment from the others and from the rock wall. Figure 22 
shows a faded-out scene comprising a complex mixture 
of various pigment colors, including whitish (panel #5). 
The scene is decomposed in 4 main ICA components (#1, 
3, 4, 6) for the pigments, the first one representing the 
whitish paint (Fig. 22d), the second the upper left bovine 
and the two last ones the three other bovines. However, 
although component #1 clearly improves the visibility 
of the faintest white figures (see in particular the barely 
visible thin human figure close to the right edge, above a 
bovine), the contrast with the surrounding wall and the 
other paintings is not as sharp as that obtained in the 
previous panels for orange or red pigments. Also it does 

not significantly improve the visibility of the whitish fig-
ures already visible with naked eyes (see e.g. the second 
human figure from the right edge).

Comparison of the synthetic RGB image build using the 
3 first painting ICA components (#1, #3, #4—Fig. 22d–f) 
against the context image processed with DStretch® LAB 
(Fig.  22c) shows that the ICA decomposition provides 
a significant contrast improvement of the faintest whit-
ish pigments. We should note here that the specifically 
designed ‘white’ YWE and LWE DStretch® enhance-
ments were not well working with this scene.

We then compared the spectra of the whitish human 
figures with the surrounding wall and the two types of 
bovine seen in the ICA components #3 and 4 (Fig. 23). We 
can see only little difference in spectrum shape of the two 

Fig. 18  Two components of the MNF transformation (panel #4) displaying the superimposition of several painting layers, with smoothed rock wall 
texture. a The anthropomorph (first layer) and the Barbary sheeps with their outline (second layer). b Same (but without the Barbary sheep outline) 
with the addition of the goat as the third ‘layer’

Fig. 19  Zoom of a small part of panel #4, highlighting a small figure only seen in the ICA components containing secondary information (#2, #5, #7, 
#8). a ICA ‘secondary’ component #2. b MNF component #4 displaying a slightly better signal-to-noise ratio and thus a better figure definition. Scale 
and location given in Fig. 17
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whitish human figures with the nearby rock wall, espe-
cially for the faintest one which has its spectrum exactly 
overlapping that of one of the rock (grey spectrum) up 
to 560  nm and little departure (< 0.02 in reflectance) in 
the remaining visible range. The main difference with the 
underlying wall is a more pronounced shoulder around 
580 nm leading to about 15–20% brighter reflectance in 
the very near infrared. These whitish human figures are 
in fact not so white, but rather reddish according to their 
spectra, but they look whitish only by contrast because 
they are slightly brighter than the wall, especially figure 
#2, contrary to most red paints that are darker, as it is 
the case for the bovines. Part of the human figure #1 has 
color and visible brightness so close to the surrounding 
wall that only small dotted parts are visible by contrast 
to the eye. It has also a more reddish color than figure #2 
(slightly stronger spectral slope below 450 nm) as it also 
appears in the ICA component #4 which mostly depicts 
the light brown part of the bovine below (Fig. 22f ). Some 
of the bovines are also difficult to discern with naked 
eyes due to very similar visible spectra of the surround-
ing wall (in particular, the one in the upper left quarter of 
the image), but they have clearly different spectral shapes 
outside the eye sensitive range, in particular between 680 
and 900 nm, which allow the ICA to extract them with a 
much sharper contrast with the rock (Fig. 22e, f ).

Panel #6: separation of graffiti superimposed on paintings
A final example of the ability of VNIR hyperspectral 
imagery coupled with ICA transformation to separate 
different information mixed together on the rock is the 

Fig. 20  End-member spectra (average of 35 to 75 pixels for pigments, > 300 for rock) of the Barbary sheep pigment (light and dark red) and its 
outline (orange and brown), the anthropomorph pigment (dark and light blue), the goat (light and dark green) and typical rock wall area (grey and 
black) selected in the hyperspectral image of panel #4 presented in Fig. 17

Fig. 21  The two main scenes of a larger part of panel #4, separated 
using the ICA transformation and projected on a high-resolution 
image of the whole panel (Samsung galaxy S21, 64 Mpx). a RGB 
high-resolution camera photo (slightly different shot angle but 
same illumination as for the HSI image). c YBK DStretch® processing 
of a stitching of several high-resolution photos. b The ‘Barbary 
sheep scene’ build with 3 hyperspectral images analyzed with ICA 
transformation (component #3). d the ‘anthropomorph scene’, same 
but using ICA component #6
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case of ‘modern art and poetry’ superimposed on Neo-
lithic painting.

Figure 24 shows a painting ‘contaminated’ with several 
graffiti drawn with different materials and colors (panel 
#6). The ICA transformation of the hyperspectral image 
produces 12 significant components with information on 
the relatively complex painting (5 components: #5 to #9), 
the rock wall (3 components #3, #4, #10) and the graf-
fiti (2 components #1, #11) as well as 2 components with 
mixed information (#2, #12).

When simulating a false color RGB image of the paint-
ing using three of the five components with relevant 
information, the graffiti can only be barely seen in the 
image (Fig.  24b) most of its information being concen-
trated in ICA component #1. The PCA transformation 
is found to be slightly less efficient to segregate the graf-
fiti information in this hyperspectral dataset (Fig.  24f ), 
and a MNF transformation did not separate efficiently 
enough painting, rock and graffiti to be useful in that 
case. DStretch® applied on the RGB context image is also 
completely unable to remove the Graffiti (Fig. 24c). At the 
opposite it has the tendency to highlight them to the det-
riment of the other colors.

Discussion
Even with a spectral range limited to 410–920 nm, mainly 
due to measurements of shaded walls indirectly illumi-
nated by sunlight scattered from the sky and reflected 
by the surrounding landscape, the analysis of the hyper-
spectral data cubes provided many improvements over 
DStretched RGB camera images. The main advantages of 
hyperspectral imagery for the study of Neolithic paint-
ings can be listed as follow.

Fig. 22  Detection and contrast improvement of faint white painting 
(panel #5). a Original RGB context image. Right: ICA transformation 
of the HSI image: the 3 most significant ICA components (d #1, e #3, 
f #4) describing the painting. b a synthetic RGB image using these 3 
painting ICA components (R = #4, G = #1, B = #3). c DStretch® (LAB) 
image for comparison. Scale provided by the white reference 10 cm 
square

Fig. 23  End-member spectra (average of 35 to 75 pixels for pigments, > 300 for rock) of the whitish human figures (dark blue: #1, light blue: #2) 
with the surrounding wall (grey and black) and the two types of bovine seen in ICA component #3 and 4 (orange and red) of panel #5
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First, based on ICA analysis which concentrates the 
useful information in 8 to 12 components, with 3 to 7 
concerning pigments, we could better separate differ-
ent physical contributions to the image which are gen-
erally mixed in the three channels of a standard camera, 
including:

•	 The pigments and the underlying rock.
•	 The composition (mostly Fe-bearing minerals) and 

the color of the pigments.
•	 The different paint layers and their juxtaposition.

While ICA is relatively efficient in separating differ-
ent types of pigments used (independent components), 
it did not provide by itself composition information. 

This can be obtained from the end-member spectra of 
the components by comparing them with laboratory 
spectra of well characterized pigments or minerals [50]. 
However, with the VNIR range we can only provide 
information on the Fe-bearing minerals. SWIR would 
be necessary to get info on some of the other minerals, 
such as kaolinite, carbonate and sulphates, constituting 
the paintings.

We could detect faint paintings, which were unde-
tected by the naked eye and even with high resolution 
camera images post-processed with DStretch®. In the 
various cases studied we found different reasons that led 
the ICA analysis of hyperspectral data to highlight new 
figures. In one case (panel #3) the pigment of the figure, 
an anthropomorph, has a color too similar to the com-
plex surrounding rock to be separated by eye or by a 
DStretch processed RGB image, but it can be easily dif-
ferentiated in the very-near infrared thanks to different 
spectral behaviors. The situation is similar for panel #5 (a 
whitish human figure) but occurs even in the presence of 
a fairly homogeneous wall color. In both cases the ‘near-
infrared vision’ provided by the HSI instrument is key to 
detect these invisible figures. In another case (panel #4) 
the paint was faint but sufficiently contrasted in the vis-
ible range relative to rock. However, the superimposition 
of at least two other paintings crossing the first one in 
many places led to very discontinuous and faint remains 
that the eye was unable to recognized as a painted fig-
ure in the middle of a complex mix of other figures. The 
ICA extraction of this paint layer from the other layers 
and from the rock texture allowed us to obtain a clean 
image of the visible remains of its paint, completed by 
additional missing pieces located under other thin paint 
layers.

Thus, specific spectral ranges contribute the most to 
differentiate the pigments from the rock wall (e.g. panel 
#2, Fig.  13), or between 2 pigments. However, in some 
cases only very subtle spectral differences are noticeable 
(e.g. panel #3, Fig. 15 and panel #5, Fig. 23). These sensi-
tive ranges are not always the same and depends on the 
painting, its alteration as well as the weathering of the 
rock wall. In our cases the two most sensitive ranges are 
both in the visible, around 580 nm, and in the near-infra-
red, above about 750  nm. It is why not only the whole 
wavelength range needs to be used, but also the analysis 
of various cases with no preconceptions on which type of 
spectral difference exists between pigments and rock wall 
textures.

While both ranges contribute to enhance the invisible 
or very faint figures, we found that the visible range plays 
a major role in the separation between different painted 
figures while the infrared mostly improve the contrast 
between the figures and the rock wall.

Fig. 24  Separation of ‘modern art and poetry’ superimposed on 
Neolithic paintings (panel #6). a Original RGB context image. d–e 
ICA transformation of the HSI image: 2 of the 12 significant ICA 
components, d) component #1, clearly separating the graffiti. e One 
(#6) of the five components describing the painting of this relatively 
complex panel. b A synthetic RGB image using 3 of these 5 ‘painting’ 
ICA components (R = #8, G = #6, B = #7). The graffiti can only be barely 
seen in this image, most of its information being concentrated in ICA 
component #1. c DStretch® (YDS) image for comparison. f The best 
synthetic RGB image of PCA components still displaying some ghosts 
of the graffiti. Scale provided by the white reference 10 cm square
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The extraction and efficient separation of the different 
painting layers is the second major advantage of hyper-
spectral data, as soon they have some spectral differences 
in the VNIR spectral range, either due to differences in 
e.g. color, composition, texture, thickness or alteration.

Due to the numerous spectral channels and the wider 
spectral range, the ICA transformation allows us to sup-
press or reduce the effects of the rock wall structure and 
of the inhomogeneous lighting. It can also remove a large 
part of the noise in the image and thus increases strongly 
the contrast between the paint itself and its surrounding 
environment. The example of panel #1 shows that even 
a small HSI instrument with just 0.25Mpx can compete 
with large cameras with several dozen Megapixels in 
terms of pigment extraction thanks to the efficient segre-
gation of instrumental (from the HSI camera) and natural 
noises. This later ‘noise’ is in fact produced by high fre-
quency spatial variations of reflected light induced by the 
rock and paint textures at microscopic/millimetric scales 
and some larger scale lighting variations, both factors 
that cannot be suppressed even with very high-quality 
cameras. Indeed, the pixel size of this HSI instrument 
(about 1–2  mm depending on camera-wall distance) is 
still slightly larger than the sub-mm size of the textural 
unit (grain facet) of sandstone rock, but the pixel size of 
high-resolution cameras (10–100  µm) may be smaller 
than crystal facets. So ‘single grain BRDF’ (and probably 
mostly its specular component) begins to be a major fac-
tor of pixel-to-pixel variability in high resolution images. 
It should be noted that the intensity of these fluctuations 
is greatly reduced in diffuse light (such as in shaded area) 
compared to direct sunlight (or artificial light) because 
of the angular spreading of the microscopic specular 
reflections (first external reflection at rock crystal face 
scale) and the attenuation of shadows at all scales. So, the 
reduced amount of light and the slightly limited spectral 
range in the shadowed area may be partly compensated 
by the diffuse lighting leading to the removal of a large 
part of natural ‘textural’ noise. The advantages of VNIR 
HSI acquisition in full sunlight is mostly the acquisition 
time which may be reduced to less than 1  min (instead 
of 3–10 min in shadowed area), and the extended spec-
tral range up to 1000 nm which may probe additional dif-
ferences between near-infrared spectra. But the stability 
of the measurement, in terms of absolute intensity and, 
more critically, color (white clouds versus blue sky) is 
then highly sensitive to any cloud moving in the vicinity 
of the sun direction. The respective advantage of the two 
situations in terms of pigment detection and extraction 
performance has yet to be assessed in a range of relevant 
situations.

The ICA decomposition on VNIR HSI data may also 
detect pigments under another paint layer where this 

layer is thin enough to be translucent in the very near 
infrared (> 700  nm), where most chromophore mineral 
pigments are less absorbing (see e.g. [50]). In addition to 
uncovering parts of an underlayer figure, this ability of 
HSI may also be to ‘clean’ graffiti drawn over Neolithic 
painting, such as in the example of panel #6.

Pigment classification is a further step in the analysis of 
a painted prehistoric scene. Our first tests with the sim-
plest algorithms (IsoData, K-means, SAM on MNF and 
ICA transformations) show that the most satisfactory is 
SAM on MNF but our simpler classification technique 
of thresholding ICA components proved to be more 
efficient in classifying the two main pigments while fur-
ther limiting the interference of background noise. This 
method also has the advantage of allowing quick and easy 
adjustment of a single, independent parameter for each 
component to obtain the best compromise between pig-
ment separation and noise elimination. It also frees itself 
from the ‘exclusion principle’ of all classification tools 
and thus keep the very important information of the 
location of mixed or superimposed pigments.

More sophisticated classification algorithms may possi-
bly get slightly better results, and should be tested in the 
future. However, they are generally more complex and 
time consuming, with pre-processing steps (extraction 
of end-members…), and parameters, sometimes purely 
mathematical, to tune to each case by trial and error. And 
in most cases the classes are constrained by the ‘exclusion 
principle’.

We also note some limitations in the measurement 
presented here, such as the format and spatial resolu-
tion of the HSI images. Although such lightweight and 
stand-alone VNIR HSI camera is ideal for exploratory 
campaigns, a larger hyperspectral image format is nec-
essary to make comprehensive surveys at higher spatial 
resolution of extended Neolithic or Paleolithic sites. Such 
instruments have been around for more than a decade 
and have recently been extended to a 3000-pixel swath 
leading to hyperspectral images of more than 15 meg-
apixels. However, they require heavier logistics in terms 
of scanning system, set of front optics, computer and 
power supply.

Extending to the near infrared (SWIR: Short-Wave 
InfraRed, 1000–2500  nm) might also improve the sepa-
ration between paints and rock and should also provide 
additional information especially on the composition of 
pigments and on the taphonomy of the rock wall (see e.g. 
[50, 70], but the logistic (and cost) of SWIR HSI instru-
ments is even heavier, in particular in weight and energy 
consumption, which should be considered for remote 
field operations.

Alternative solutions to VNIR HSI may be multi-
spectral VNIR cameras with 8 to 20 spectral bands 
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and larger image format if they cover a wide enough 
spectral range (at least 400–900  nm) in order to be 
sensitive to some very near infrared spectral differ-
ences between pigments and/or rocks of same appar-
ent color (see e.g. panels #3 and #5). The simplest ones 
with only 8 spectral channels (using a 3 × 3 Bayer filter 
mosaic) may already provide useful additional informa-
tion, but as they still strongly under-sample the whole 
spectral information, the separation between pigments, 
rock and noise will not be optimal in the case of com-
plex paintings and /or rocks. Although we have not 
fully investigated the effects of number, position and 
width of spectral channels, our guess, given the num-
ber of useful information channels, is that instrument 
noise and natural high spatial frequency fluctuations 
will not be well segregated by the ICA transformation 
until a large number of spectral channels (> 20) is used. 
Indeed, in our study up to 12 components contained 
useful information and the noise was concentrated in 
the other ones.

Another aspect to be considered is the processing of the 
hyperspectral data, which is more complex and computer 
and manpower time consuming as it involves copy of 
the data set to a computer, preliminary inspection of the 
data to optimize the process, a series of high-level math-
ematical operations on the data cubes to get the results, 
followed by visual inspection of each of the 12–15 first 
ICA components to determine which type of information 
they contain (painting, rock, illumination field, noise, …) 
and then post-processing of the most interesting com-
ponents. This whole series of processing cannot be eas-
ily and rapidly done in the field (> 20 min) compared to 
a simple DStretch® visualization. The data recording is 
therefore partly blind to the potential presence of "invis-
ible" paintings in the scene. However, automatization of a 
pipeline including most of the process is possible, at least 
for a given type of measurement, but it still needs to be 
developed and standardized. Nevertheless, it should be 
kept in mind that the amount of information contained 
in a single data cube is very large (300 Mo to 50 Go) and 
its complete exploitation, beyond the simple separation 
of pigments, may need additional analyses and tools. For 
example, an extension of the processing may consist in 
performing local analyses of the images, focusing on local 
variations of pigments and rock texture in and around a 
single figure. If the subset selection reduces the variabil-
ity in the image part under study, it may help to discover 
small additional figures or details which were otherwise 
buried in the noise. In a second stage, the use of well-
adapted hyperspectral pixel classification tools and tech-
niques may allow a sharper separation of the different 
types of pigments and their projection on high spatial 
resolution camera image [70], with their ‘original’ color 

rendering, thanks to the conversion of their visible reflec-
tance spectrum into photometric information.

However, a small software running a pre-optimized 
ICA transformation on HSI data complemented with 
some simple visualization functions should be as easy to 
manage as with DStretch® on RGB camera images and 
will provide much better results due to the better separa-
tion between the various pigment and rock contributions 
and the removal of a large part of the high spatial instru-
ment and natural noises.

Data reduction steps of HSI image may be even easier 
and more reproducible as only global and standard image 
processing functions may be used thanks to the better 
separation of information by ICA. For example, a sim-
ple global thresholding of some of the ICA components 
(i.e. a black and white image) can already provide a quite 
clean distribution map for some pigments, without hav-
ing to use sophisticated functions and local manipula-
tion to extract the pixels of a figure in image processing 
software.

Conclusions
The “HSI revolution” that has emerged from space explo-
ration and now back on Earth may provide archaeologists 
with a new way to access more information than in the 
past while respecting the integrity of rock paintings. It is 
a new step in the evolution of the methods for documen-
tation of rock art. It is advisable to recall nevertheless that 
it does not eliminate the subjectivity of the survey, since, 
whatever the chosen mode of operation, the human 
intervention is always preponderant at the acquisition 
step, but also at the analysis and interpretation steps [2, 
71]. Nevertheless, HSI instruments made it possible to 
push back the limits of the standard RGB cameras.

An RGB camera image of Neolithic painting on oxi-
dized sandstone analyzed with DStretch® can be suffi-
cient to visualize part of the figures, generally the most 
recent, or even all the figures in the scene when they have 
sufficient color contrasts between them and with the 
rock. Now, with a hyperspectral data cube recorded with 
a VNIR HSI instrument we can better remove the wall 
texture as well as the natural noise and extract the dis-
tribution of the various pigments with a greater contrast. 
When the color contrast of a figure with the surrounding 
rock, or figures, becomes poor or statistically null, due to 
the progressive alteration of both paint and rock, an HSI 
can reveal new figures by capitalizing both on its strong 
ability to extract the distribution of the different pig-
ment types, and on the new discriminating information 
contained in the very near infrared part of the spectrum. 
Another important result is that measurement of shaded 
walls is not a major problem, mostly slightly reducing the 
VNIR spectral range and increasing measurement time, 
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but possibly positively reducing the natural high spa-
tial frequency noise linked to rock and pigment micro-
textures that otherwise strongly disturb the extraction of 
pigmented pixels.

HSI measurements are especially useful when the 
figures have a complex organization in the scene with 
numerous juxtapositions or layer superimpositions, 
when they are polychromatic, and when in addition some 
of them are very faint. In that case a dozen information 
components are needed to describe correctly the variety 
of pigment and rock composition, texture and altera-
tion degrees. In such a case, quite frequent indeed, a 
few dozen well distributed spectral channels are a mini-
mum to sample all this information as well as the differ-
ent sources and pattern of noises, to best remove them. 
Thus, from this point of view, one can easily realize that 
an RGB camera can only record highly degraded infor-
mation with its only three wide spectral filters covering 
a limited spectral range, a strong physical limitation that 
DStretch® cannot improve in any way. Our eye, with 
a similar color information collection process, is well 
known to have a sensitivity covering less than an octave 
(a factor of 2) and to be a poor discriminator of wave-
length [72]. It is thus absolutely unable to recognize the 
individual wavelengths of two combined monochromatic 
sources, contrary to our ear that can recognize the com-
bination of 2 or more tones over at least 5–6 octaves. It 
is what a VNIR HSI instrument can do over about 1.5 
octaves and almost 3 octaves for a coupled VNIR-SWIR 
instrument.

With a VNIR instrument only, even able to record 
larger images at higher spatial resolution, the capability 
to go to the next scientific step of the identification and 
mapping of the composition of pigments is quite limited 
as mostly the chromophore minerals (hematite, goethite, 
…) play a role and can be identified in this spectral range. 
It should be noted here that an RGB + DStretch® image 
gives no access to such information. A SWIR HSI instru-
ment covering the 1–2.5  µm range is needed to map 
chemical and mineral composition of pigments and rock. 
It should also improve the separability of pigments of 
similar visual color; allow us to group figures on the basis 
of their composition; and provide clues as to the presence 
of mineral phases associated with the pigment giving 
indications on possible intentional mixtures and on the 
origin of the raw materials. But a SWIR HSI instrument 
implies a much heavier logistic on the field.

The speed and ease of obtaining powerful and reli-
able results are essential conditions for documenting 
rock sites in mountainous or desert areas where access 
difficulties, extreme environment conditions and field 
logistics are crucial. For such exploratory campaigns 
DStretch® allows a quick deciphering of the walls, 

which facilitates the acquisition of precise and detailed 
documentation. Complexity is not a guarantee of per-
formance, and for the Saharan terrain, efficiency is the 
essential quality to privilege. At the moment, RGB cam-
eras with DStretch® is still an unavoidable combina-
tion of tools for field research. Its partially automatized 
decorrelation of image channels specifically dedicated to 
enhance pigments makes it easy and fast to use and very 
popular among most rock art recorders [5, 24]. Previous 
tests of PCA run on RGB images showed that they gave 
slightly better results (5%) than DStretch, but the differ-
ence was not considered enough to revolutionize the field 
[63]. But a compact and lightweight VNIR HSI (or multi-
spectral) camera should become the best companion of 
Neolithic painting explorers as we demonstrated that its 
added archaeological value is very significant.

Currently the three major limitations of HSI cam-
eras, compared to RGB cameras, are first the size of the 
image, typically an order of magnitude smaller in both 
directions, which constrains either the size of the figure 
or panel recorded, and/or the pixel spatial resolution: a 
strong limitation when there are narrow drawings (sub-
mm). And second, the measurement preparation (need 
to be fixed on a tripod) and recording time (up to 10 min 
in the worst cases of low light) which limits the number 
of measurements also by more than an order of magni-
tude compared to cameras. When the recording time is 
long there is also the issue of the stability of the illumina-
tion, so relatively stable weather conditions are the best, 
either clear sky or fully cloudy. However, the develop-
ments of these types of instruments are fast and image 
format of portable HSI should steadily increase. There is 
also a growing number of compact commercial ‘snapshot’ 
(or quasi-snapshot) acquisition solutions, with 8 to up 
to a hundred spectral channels, but generally still with a 
small image format and sometimes with too large mini-
mum focusing distances for archaeological use (currently 
mostly developed for UAV). They should in the future 
reduce the preparation and acquisition time of hyper-
spectral measurements close to that of a normal camera. 
When these instruments will be mature and will have 
overcome some of their restrictive characteristics, they 
will be the perfect and powerful camera in remote area.

The last limitation is the data processing, as ICA is a 
time-consuming convergence algorithm and involves also 
a visual selection of the relevant components, which may 
be more than 3, to be displayed in B&W or RGB. Cur-
rently, unlike DStretch®, this processing cannot be per-
formed on site, but the development of dedicated plugins 
can be considered.

However, back from the field, data analysis with ICA 
can be efficiently computed with dedicated software 
(such as ENVI) on powerful computers. It requires a little 
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bit more skills to preselect the best wavelength range 
and some ICA parameters, but some of these steps may 
be automatized to get the best results for rock art. With 
the coupled use of hyperspectral images and ICA algo-
rithms the gains in detectivity and separability between 
pigments and with rock wall texture is such that it should 
make the extraction of faint or barely-visible painting 
easier, faster and more reproducible than with camera, 
even with the current limitations of the instruments.

In the following, we suggest a photographic strategy for 
remote and hard-to-reach area in 3 steps:

Step 1: Identify the paintings

–	 Use of RGB cameras (e.g. last generation smartphone 
cameras) with onboard DStretch® or similar software 
to (1) help rapidly explore shelters, especially those 
hard-to-reach, (2) visualize on-site the faint paintings 
to assess their potential interest, and (3) systemati-
cally record the figures, their locations and extend, or 
tracks of pigments on the wall.

–	 Use a lightweight VNIR HSI camera to record the 
most complex panels, in terms of polychromies, fig-
ure superposition, or variability / complexity of rock 
texture and color of the wall. Also make some global 
low-resolution measurements on potential panels 
where no clear figure is visible either by eye or on 
DStretched images.

–	 Possibly use lightweight and foldable sun reflectors 
directed toward the shaded panel to increase the 
spectral range up to 1000 nm (but may induce illumi-
nation inhomogeneities).

Step 2: Systematic recording of the paintings of whole 
panels

–	 Use of a high performance VNIR HSI instrument 
(1500–3000 pixels swath) to easily cover large scenes 
at high spatial resolution

–	 Use lighting lamps for shaded walls (but energy con-
suming) to reduce acquisition time and benefit from 
the full very near infrared range, up to 1000 nm.

–	 Complement measurements with a portable VNIR-
SWIR point spectrometer to record typical and end-
member spectra of paint and rock wall over the full 
spectral range (but may need on-site HSI data pre-
processing to locate them accurately) for pigment 
and rock composition determination.

Step 3: Mapping of the pigment composition and rock 
taphonomy

–	 In addition, use a SWIR HSI instrument (1000–
2500  nm) to improve the pigment separability and 

map pigment composition and rock taphonomy 
(mineral identification). But these measurements 
in the near-infrared will be only possible in sunlight 
(but restricted outside the strong atmospheric water 
bands), or better, with a powerful artificial halogen 
lighting to cover the whole spectral range (further 
increasing weight, complexity and power consump-
tion). This step can be also complemented with 3D 
acquisition with digital photogrammetry and three-
dimensional scanner laser [73, 74].

In order to be efficient in the field for the exploratory 
phase (step 1) it should be useful to get on-site a first 
guess of the interest of HSI measurements of some area. 
So, a fast and automatic data analysis pipeline run just 
after recording should be developed to assess if more 
extended data cube measurements or at higher spatial 
resolution are needed.

Also, in this exploratory study we only analyzed the 
main ‘paint’ components of the ICA transformation as 
well as comparisons between some end-member spectra 
of the major ICA components of interest. We have shown 
only one example, in a simple case (panel #1), of complete 
pigment extraction and overlay on the original image 
after ‘restoration’ of the color with a higher contrast with 
the rock. However, various other post-processing opera-
tions may be performed on the hyperspectral data and 
their analysis products depending of the final goal (fig-
ures and scene reconstruction, chronological study, pig-
ment composition, …).

Many different tools have been developed, in addition 
to the mathematical transformations used here, to help 
distinguish between the different pigments and classify 
them in a series of homogeneous classes for further anal-
ysis in terms of color, composition, painting technique, 
superposition, etc. After the spectral concentration of 
information performed by the ICA, this step corresponds 
to the spatial dimension reduction and concentration 
of the information [75]. These tools can work either 
directly on the original hyperspectral data cube, or on a 
selected set of ICA, PCA or MNF components, or even 
on denoised hyperspectral data cubes reconstructed by 
filtering out the noise components followed by an inverse 
transformation [66]. These tools, once adapted to the 
data and the specific problem to be solved, have proven 
over the last three decades to be very useful and efficient 
in many fields of remote sensing (e.g. planetary sciences 
or Earth monitoring) as well as in painting arts of all ages.

Regarding rock arts, they need to be tested and adapted 
to the types of pigment and rock wall color, composition, 
texture and alteration types. But also, to fieldwork and 
its specific lighting conditions. The case treated in this 
exploratory article of red–orange pigments painted on 
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oxidized sandstone walls and subjected to strong corra-
sion was a good example and a rather difficult case to test 
the technique. But it proved the great potential of VNIR 
HSI instruments to uncover new figures hidden to the 
naked eye and to effectively separate their pigments from 
the wall substrate. We believe that these instruments 
open up new and exciting horizons for the study of rock 
and cave paintings.
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